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Bifurcation Modes in the Limit of Zero Thickness of Axially
Compressed Circular Cylindrical Shell

Youngjoo Kwon *
(Hongik University)

Bifurcation intability modes of axially compressed circular cylindrical shell are investigated
in the limit of zero thickness (i.e., h (thickness) -- 0) analytically, adopting the general stability
theory developed by Triantafyllidis and Kwon(l987) and Kwon(l992). The primary state of
the shell is obtained in a closed form using the asymptotic technique, and then the straight
forward bifurcation analysis is followed according to the general stability theory to obtain the
bifurcation modes in the limit of zero thickness in a full analytical manner. Hence, the closed
form bifurcation solution is obtained. Finally, the result is compared with the classical one.

Key Words: Strain Energy Density Function, Storen-Rice Hypoelastic Material, Characteris
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1. Introduction

Instability problem in solid structures, e.g.,
structures with small thickness such as beam,
plate, shell etc., has received considerable atten
tion in the literature. This instability phenome
non, physically termed "buckling" and mathemat
ically termed "bifurcation", is still not fully
understood. Although the first instabiliy studies
in solids go back to Euler (so-called Euler's
beam theory), the proper mathematical founda
tion for the theory of structural instability as a
bifurcation problem is a much later achievement
and it is essentially due to the works of Koiter
(1945) for the elastic case and Hill (1957, 1958)
for the more general case of rate independent
solids. Even though vast efforts have been made
to solve the structural instability problem since
the beginning of this century (Lorenz, 1908; Don
nell, 1934), the results were not so much satisfac
tory (Timoshenko, 1961; Hutchinson, 1974).
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Hence, the structural instability problem of even
simple beam is still now under investigation (Pak,
1995).

So far, one of the controversial structural insta
bility problems is the axially compressed circular
cylindrical shell buckling. Since the earlier work
by Lorenz(1908), many engineers have tried to
obtain their theoretical results on the axially
compressed cylindrical shell buckling (Donnell,
1934; Von Karman et al., 1941; Donnell et al.,
1950; Yoshimura, 1955; Hoff et al., 1965; Lee,
1966; Hoff, 1966; Tennyson, 1969), but their
results were not so much satisfactory comparing
with some experimental works (Evensen, 1964;
Almroth et al., 1964; Horton et al., 1965). The
discrepancy between the theoretical results and
the experimental results was considered to be due
to imperfections (unavoidable deviations from the
exact shape) (Von Karman, 1941; Donnell et al.,
1950) and edge conditions (Nachbar et al., 1962;
Almroth, 1966). Reviewing their research results
show that large number of buckling modes of
waveform pattern (e.g., diamond type pattern
(Horton et al., 1965) or Yoshimura's triangle
type pattern (Yoshimura, 1955» may occur for
circular cylindrical shell thin enough to buckle
and not too long to buckle as Euler columns
under some axial compressive loading. However,
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Fig. 1 Schematic diagram of the axially compressed cylindrical shell and sign conventions

clear theoretical explanations on these phenome
non were not given.

Practically the cylindrical shell has been one of
the most commonly used elements in modern
structures. Its importance and its simple shape
have stimulated considerable interest. This inter
est has led to advances in the theory of thin shells.
One of practical applications of thin shells is the
application associated with the sheet metal form
ing problem (Kim et al., 1999). For the purpose of
this practical application, some remarkable works
to propose a general consistent methodology for
the analysis of bifurcation instabilities in solid
shells of arbitrary thickness have been done by
Triantafyllidis and Kwon (1987) and Kwon
(1992). In place of the classical approach, in
which a two dimensional nonlinear theory (der
ived from the three dimensional governing equa
tions of the solid) is linearized about the critical
load, the general stability theory by Triantafyl
lidis and Kwon (1987) and Kwon (1992) starts
from the bifurcation equation of the three dimen
sional solid (which have been obtained by linear
ization about the critical load of the same three

dimensional governing equations for the non
linear solid equation) and subsequently takes the
limits as the structure thickness h tends to zero,
following a multiple scales asymptotic technique.

In this study the so-called controversial struc
tural stability problem, i.e., the axially com
pressed circular cylindrical shell buckling prob
lem, is treated, adopting the aforementioned gen
eral stability theory by Triantafyllidis and Kwon
(1987) and Kwon(1992). For this analysis, it is
assumed that the compressible isotropic hypoelas
tic cylindrical shell is compressed axially, and
then the forthcoming bifurcation instability phe
nomenon is investigated in the limit of zero thick
ness. The prebuckling state is solved in an
asymptotic manner in the sense that the full
analytical primary solution is not required for the
asymptotic instability analysis. And the imperfec
tions effect on the buckling is not considered in
this analysis.

2. Primary State

In this study we treat the case where the top and
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bottom surfaces of circular cylidrical shell are
lubricated and so they move freely. This is pos
sible through the volume controlled experiment
and many waveform bifurcation modes are found
in this circumstance (Horton et aI., 1965). Thus,
the possible prebuckling state is just a cylindrical
one as depicted in Fig. 1. Assuming that the
material point doesn't rotate during the deforma
tion the material point has the position vectors

p=r(cos ei+sin OJ) -rzh, currently (I)

and

where cy= ry/E is the initial "yield strain", fy is
the initial "yield stress", and m is the hardening
exponent. A strain energy density function W
which describes such a material is

W(Ah ,12. k) =E c}Lil (~;Y+l_16211(~;rJ

+ 6(l~211) (Cl+C2+c3)2+C (7)

in which the equivalent Kirchhoff stress t, is
related to the equivalent logarithmic strain Ee by
the relation

P=R (r) (cos 8i +sin OJ) + hk, intially (2)

(9)

(8)

where X=I if ces2(1 +11)cy/3 and X=m if e.>
2 (I + lI) cy/3. Also, E is the Young's modulus, II

is the Poisson's ratio and the constant C which
depends on E, IJ, m and cy is constructed so that
it assures the continuity of W at ce=2 (1+ IJ)cy/3.

Here, in the hope that the bifurcation instablity
phenomenon will occur in the elastic range and
for the simplicity, we treat only the case of m= 1.
That is, when m= I, we have

where ci=ln Ai. And the current Cauchy stress,
when m=l,

11;=- Allk . 1;1I(1ni;+ 1~211 InAl;zk) (10)

Equilibrium Equation
The only nontrivial equilibrium equation in the

cylindrical coordinates, using the physical compo
nents

(3)

(4)

_ 1 aw (')fi-I\, JAi .

where "(!)" means "no sum", fi are principal
Kirchhoff stresses, Ai are principal stretch ratios

and W= W ( I c, Hc, DI c)= W (AI> A2' k) is a
strain energy density function with

I c=IV+A/+k2

Hc=/h2tl/+Alk2+k%2

mc=A12Altll

where " and I are the current deformed radius
and length and Rand L are the initial undefor
med radius and length of the cylindrical shell, and
A2= 1/L is the axial stretch ratio. Since we
assumed that the material point doesn't rotate, the
stress state is principal. That is, any shear stress
doesn't evolute.

Now, assuming that the material is a compress
ible isotropic material, we have the following
constitutive equation

Kinematics
For this special case of axially compressed

circular cylindrical shell, the principal stretch
ratios are

(5)

Power-law type material
Here, we will consider a simple material whose
uniaxial stress-strain behavior is a piecewise
power-law

~=...!..... for fsry• ~=(-.I.-)m for r>ry (6)
e, fy e, fy

(11)

where r.. ro are current inner, outer radius respec
tively, or using the above expressions Eq. (5) and
Eq. (10) , the above Eq. (11) becomes

r a~[~~ ~ l {In~~ + 1~211In( ~~ ~ l)}J
+aR R I In aR r )=0 (12)

arrA2 (jrR

This is a nonlinear differential equation with
high degree for R (r) whose analytical solution is
very difficult to treat. The possible analytical
approach is through the asymptotic method.
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Nondimensionalization
To obtain a proper dimensionless equation for

the asymptotic analysis, we adopt a change of
variable as

(22)

o 1 z
where R, R, R, etc. are defined as the lowest order
term, the first order term, the second order term,
etc., respectively in power series expansion of R*

o
(.;, c) in terms of e, i.e., R=limR* (.;, c).

<-0

Noting that c is small, we may have the power
series expansions of R* and A as follows.

o I 2 3

R*(';, c}=R+Rc+Rcz+Rs3+... (21)

o 1 Z 3

A1=A1+A1c+ Al~+A1c3+...
o 1 2 3

A2=A2+A2C+Azc2+Azc3+... (23)
o 1 Z 3

A3=A3+ kc+k~+A3c
3+ ...

And

o 1 2

where A, A, A, etc. are defined as the lowest order
term, the first order term, the second order term,
etc., respectively in power series expansion of A

o
(c) in terms of e. i.e., A=limA (c).

<-0

Also, in the same manner we have the expan
sions of Ai, a« i.e.,

(16)

(18)

(14)

(15)

t*=t/ri or t=rit*

then r=ri( t*+l+ n
with c=...k..(thickness parameter)

r.

And, we define again,

t=r-(ri+ ~) or r=t+ri+ ~ and ar=at (13)

where h is a constant current thickness. Further,
we normalize this coordinate as

then

r=ri{s(';++)+I} and ar=riCa.; (17)

Then, the governing equation Eq. (11) becomes

and

I Z

2 0 O[ 1-3a (A)2 A 1-a
O2=-E(R}z)' 2(I+a} A + A+ I+a

(25)

(26)

(27)

(24)

o 0

0i=03=0
o 0 1-a 0
02= - E (A) 1+a In A
I 1

0i=03=0
1

~=-E(R)2A(1+ ~~~ InA)}
Z 2

0i=03=0

a I 2 3

(Jl =Oi + (JIS+ 0ie2+ (JIS3+ ...
o I Z 3

(J2=02+ O2S+ 02~+ O2S3+...
o I 2 3

113=03+ 03S+ 03~+ 03c3 +...
Inserting the above expansions Eqs. (21) - (24)

into the governing equation Eq. (18) and after
quite long algebra, we obtain the asymptotic
primary solution as follows.

(19)

A=A(c}

and the principal stretch ratios are

r c( ';++)+1
AI R R*

'_1 _LAz= L =1""' A=/(load parameter) (20)

or I
k oR oR*/ ca.;

where R*=R/ rio Note that A is chosen as the
load parameter here.

Asymptotic solution
Now the primary solution R*= R/ r, is a

function of .; and e. i.e.,

R*=R*(';, c)

and the load parameter A is a function of e, i.e.,

This is the desired dimensionless equation for the
asymptotic analysis. Together with this equation,
we have the following traction free boundary
condition
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And
o 0 a
R= (,1)i+a

1 1 2

2 ~( 1\,1 1+2a ,1)2 ,1)0
R= -Ttal ~+y[f- 2(1 +a) 0 +0 R (28)

1\ A A

1

1 ( I a ,1)0R= ~+----oR2 I+a ,1

etc., where a=-v-I-v
L 1133 Ev 1

(l+v)(1-2v) ?
L 2233 Ev

(I + v) (1-2v)

L I212 ~ E ( )} 1=Yl1+v - n+(2 ?

L I313 I {E ( )} I=T I + v - (3 + n ?

L 2323=+{ I ~ v - «2+ (3) }

1 2

3 _~f 1+2a (,1)2 ,1}O
R=Ttal.2(I+a) 0 -0 R~+C3

,1 ,1

where C3 is the unknown constant to be deter

mined.

and others are zero, note that L ijkl= L k/ij= L iik/

= L ij/~. Or the physical components defined as

L<u1d>=LukLJgi&gu!J1l (!) ((!)means "no sum") (32)

are, noting gl1 = r', &22 = g33 = I

and others are zero. And so, the power series

expansion of the primary state can be formed as

o I 2
Mukl=Lukl +riktl=~k/+~kl€+~kl€2+... (34)

with same definitions as in Eqs. (21) - (22)

L <1212>=.l-{-L_ ( (I+ (2)}
2 I + v

L<1313>=+{ I ~ v - «3+ n) }

L<2323>=+{ 1~ v - «2+ (3)}

Ev
(1+v) (1-2v)

(33)

E(1-v)

(1+v) (1-2v)

(I + v) (I-2v)

E(I-v)

(I + v) (I-2v)

E(I-v)

L <3233>

L <1I11>

L <2222>

L <1122> =L <1133> =L <2233> =...

(29)

3. Constitutive Law

Next, attention is focused on the choice of a

proper constitutive law, for a compressible elastic

-plastic solid the stress increments are related to

the strain increments by a constitutive equation of

the form

The instaneous incremental moduli L ij~/ have
the symmetries L ij~/ = L ~/ij= L /~ij= L ~lii and

have two branches, the one corresponding to

plastic loading, and the other to elastic unload

ing. There are several constitutive models. Here,

specially, we are interested in the compressible

Storen-Rice hypoelastic material. The in

cremental moduli for this finite strain J2-deforma

tion theory is, especially when m= I (no harden

ing, elastic case),

4. Bifurcation Analysis

Using the updated Lagrangian formulation, we

have the general asymptotic bifurcation solution

for the asymptotic expansion of the bifurcation

mode and see Kwon (1992) for more details, i.e.,

L ijkl= _$ j.l-(gi~gi/+gi~gi/) +_V_gijg~/}
T+"Vl2 1-2v

_+(gi~rll+ s":"+ s":" + gilrl~) (30)

Now, for this special cylindrical system, we have

V II1_ { E (1-v) 2(1} ;4- (l+v)(I-2v)

L2222 E(I-v) 2(2
(I + v) (1-2 v)

L3333 E(I-v) 2(3
(1 + v) (I-2v)

L lI22 Ev 1 (31)
(1 + v) (1-2v) r 2

Or

o I 2

L1UI=U/+U/c+U/C+'"

o I 2

Ve=L1Ul = Ve+ Vsc+ VeC+ '"
o I 2

VZ=L1U2= Vz+ Vzc+ VzC+...
o I 2

Vr=L1U3= u-+Vre+ Vre2+...

(35)
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where we use the same definition as in Eq. (21).
For the constant current thickness, i.e.
h=ho or g(8a) =1 (Kwon, 1992), the solutions
are

The lowest order solution
o 0

((;'ifJl UI.fJ) , 0 = 0. (36)

Now in the volume controlled experiment, e.g.,
under the lubricated free ends condition, usually
the waveform bifurcation modes in the angular
direction are found (Horton et aI., 1965). Hence,
the mode is periodic in the angular direction
without loss of generality, and so the solution
should be the following form

o 0 0 0 0
(;'ifJl = fYrifJl_ fYri3m (flItn3m) -1flItnfJl

where the notation (), 0 is defined as T'", 0=

o 0 0 1

aTaj/aoa+PmaTm.i+PmaTma and I'A=l1k+l1k
2

c+ I1k~+ ... is Christoffel symbols (Kwon,
1992) with same definitions as in Eq. (21).

(39)

o 0

V8=Un sin nO
o 0
Vz=Vn cos nO
o 0

Vr=Wn cos nO

o 0 0

where u«, Vm to« are functions of x and n is the
angular wavenumber and integer. Inserting these
mode assumption into the differential equation
Eq. (36), we will obtain the following partial
differential equations (coupled)

(37)

with

The first order solution

I t { 0 "fJl 1 0 "fJl 0 1 0 "fJl 0
-!. ((;'i ui»+O" UI.fJ) , ~+Pma Q'V UI.fJ

2

1 0 O}
+ PmaG'mfJlUI'fJ a~=o

with
1 1 0 0 1 1 0 0c«= ~fJl_ },fJ"3k (M'm3k) -1M'm{J1_ };F3k (M'm3k) -1 M'm{J1

o 0 1 0 0+~3k (M'm3k) -1 M'm3P (Mn3P) -1 MnfJl, etc.

Now, specially, we apply this general theory to
our current cylindrical shell bifurcation problem,
noting that the characteristic length of the current
configurartion £.= rio

Boundary Condition
For lubricated free ends, we should have two

boundary conditions: the one is the constant
vertical displacement condition (essential bound
ary condition) (volume controlled experiment),
the other is the no shear traction condition (natu
ral boundary condition). From these boundary
conditions we may obtain the boundary condi
tions for the asymptotic expansion of the bifurca
tion mode LJUI successively. For example, for the

lowest order mode, we have, at x(=z/ri) =0, xo

(=l/r;)

And the boundary conditions are, using the
assumed modes

o 0

~n=O, aa~n=aa~n=o at x=O,xo(=I/ri) (41)

Now, we can solve the above coupled partial
differential equation in a straightforward manner.
The solution should be surely of the form

(42)

o 0

un-ueTX

o 0

Vn-ve TX

o 0

Wn-we TX

Inserting this solution form into the equation Eq.
(40), we may obtain the characteristic equation of

o 0 0
r for the nontrivial solution (u. v, w) as

(38)
o 0

~~ =0, ~~ =0 (natural B.C.)

o
vz=O (essential B.C.)

and

Solution (43)
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o
where A, B, C are functions of A, nand 1/. Hence,
we have six roots of r (r=O of them is double
root), and the corresponding solution is

equation At2+Bt+C=0(t=r2
) . Hence, we get

o
the following characterisitic equation for A

And the corresponding critical axial stress is zero,
i.e.,

From the above equation, we have the critical
load parameter as

(50)

(49)

o(48)

t.i.e., m=O or J...=O)
to

o 0 I
Acr=(A)mln=1 at m2=0 or--:-T=O

ta

o 0 0

Un= Uo(Ao+ BoX) +UI(Alcosh/t;"x+ B1sinh/t;"x)
o

+ U2 (&coshJTzx +B~inhJTzx)
o 0 0

Vn= lll(Ao+BoX) + VI (Alsinh/t;"x + Btcosh/t;"x)
o

+lk(MinhJTzx+ B~oshJTzx) (44)
o
wn=Ao+ BoX +Aicosh/t;"x+Bisinh/t;"x

+&coshJTzx+B2sinhJTzx

where t, and t2 are two different solutions of

At2+ Bt+ C=0(t=r2
) . Applying the boundary

condition Eq. (41), we may obtain the values of

six unknown constants (Ao, s; AI' B\> A 2, B 2)
as A o=Bo=BI=A2=B2=0 and AI=FO(arbi
trary). Also, we should have the characteristic
equation

sinhJt;"xo=O or tl= - {J} (45)

where m=p7Cr;/! (p is the axial wavenumber and
integer). And the corresponding solution is

o 0 0

where Ut, VI are functions of n, to, Aand 1/, and Al
is arbitray nonzero constant. Hence, the complete
solution may be written as

Hence, in the limit of zero thickness of the
circular cylindrical shell, as soon as the axial
compressive load is exerted on the shell's edge
surfaces, the shell tends to buckle. And the corre
sponding axial wavenumber parameter to is zero
or a very large number. The case in which m is
zero is the long cylindrical shell buckling case (i.
e., !->very large). In such case the shell will not
buckle as bifurcation modes of waveform pattern
(i.e., m=O), but it will buckle like Euler column.
However, the shell with finite length tends to
buckle as bifurcation modes of waveform pattern
(l/m=O or m->very large value). The load

o
parameter Adecreases as the angular wavenumber
n increases. Hence, in the limit of zero thickness
of the shell with finite length, the shell tends to
buckle into many waveform bifurcation modes
(in both angular and axial directions). This
agrees very well with the classical experimental
observations (Horton et aI., 1965). And the result
on the critical axial stress in the limit of zero
thickness also coincides with the classical theory
(Hoff, 1966).

(47)

(46)

o 0

u«= uiAIcos aix
o 0

Vn=VI i Aisin aix
o
wn=AIcos aix

o 0

Ve= UI sin n8cos tax
o 0
Vz=VI i cos n8 sin tax
o
Vr=COS n8 cos cox

Since these solutions are valid for all nand p, the
linear combination of these solutions for nand p
will be the general solution for the bifurcation
modes in the limit of zero thickness of the shell.
And these are the exactly the waveform type
bifurcation modes, which coincides with the clas
sical experimental results (Horton, 1965), e.g.,
periodic diamond type or Yoshimura's periodic
triangle type bifurcation mode. Now, to obtain

o
the characteristic equation for A, we should note
that tl= - w 2 is the one of roots of the quadratic



46 Youngjoo K won

4. Conclusions

In this work, we investigated the bifurcation
modes in the limit of zero thickness of the axially
compressed circular cylindrical shell, adopting
the general stability theory developed by
Triantafyllidis and Kwon (1987) and Kwon
(1992). Solving the lowest order solution of the
general stability theory, the bifurcation modes

o 0 0
(V8, vz, Vr) in the limit of zero thickness of the
shell are obtained as

which is very satisfactory comparing with classi
cal result is obtained. However, even though it is
not calculated here, the higher order solutions
may be obtained as many as required for accuracy
using the methodology adopted here, but this
calculation is not possible in the classical two
dimensional nonlinear instability theory as
shown in Eq. (52). Hence, the methodology used
in this paper is very powerful, and the
computaions performed in this paper can be
extended to obtain the higher order solution in
further study.

which exactly agrees with our result Eq. (50).
Many experimental results in the classical
research (Evensen, 1964; Almroth et aI., 1964;
Horton et aI., 1965) show that large number of
bifurcation modes are observed in the form of
wave for very thin shell, which agrees with the
result of Eq. (49). Another interesting result is
that (J) is zero for long cylinder. Hence, the long
circular cylindrical shell will buckle as Euler
colunm as soon as the load is exerted.

In this paper, only the lowest order solution

where nand pare wavenumbers in angular and
axial direction respectively, and Anp, Bnp are
functions of n, (J), II and Cnp= 1. At the critical
condition, the axial wavenumber parameter (J) (=

p7fr;/ l) is zero or a very large number ((J)=O or
1/ (J) = 0), and the corresponding critical load

o 0 0 0
parameter Acr is one (i.e., Acr = (A)min= I or (Oz)

cr=O). This result exactly coincides with the
classical theory and observations. In the classical
theory the critical axial load for the axially com
pressed cylindrical shell (Hoff, 1966) is obtained
as
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